What’s New in Obstetric Anesthesia
Publications from 2015

Philip Hess, MD
What’s new in OB anesthesia?

- Mortality and Morbidity
- Cesarean Delivery
- Effects of Anesthesia
Mortality and Morbidity
Maternal Mortality

Pregnancy-Related Mortality in the United States, 2006-2010.
Obstet Gynecol 2015;125:5-12
Maternal Mortality

CDC’s Pregnancy Mortality Surveillance System

Maternal deaths within one (1) year

10 category Cause-of-death coding
 - ACOG and the CDC Maternal Mortality Study Group
Maternal Mortality

20,959,533 live births during 2006–2010

3,358 pregnancy-related (8,645 total deaths)

16.0 deaths per 100,000 live births

- 86.5% within 42 days (13.6 per 100,000)

- 2009: 17.8 deaths per 100,000 live births

 - Obstet Gynecol 2015;126:486-90
 - Increased influenza – related deaths in pregnancy
 - 12 % of all pregnancy-related deaths

Obstet Gynecol 2015;125:5-12
Maternal Mortality

Age

Advanced maternal age (≥35 yr): 27.4%

Obstet Gynecol 2015;125:5-12
Maternal Mortality

1987 – 1990
- Hemorrhage
- Hypertensive disorders
- Infection
- Embolic

2006 – 2010
- Cardiovascular
- Infection
- Cardiomyopathy
- Medical comorbidity

Preexisting → Aquired

Obstet Gynecol 2015;125:5-12
Factors Associated with Maternal Death from Direct Pregnancy Complications: A UK National Case-Control Study.
BJOG 2015;122:653–662
Maternal Mortality – UK

- Life threatening condition
- Death

BJOG 2015;122:653–662
Maternal Mortality – UK

- Unmatched, case-control, retrospective analysis
- Mortality data - MBRRACE-UK database (2009 to 2012) (n=135)

BJOG 2015;122:653–662
Maternal Mortality – UK

Table 3. Population-attributable fractions (PAFs) for specific associated factors

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>PAF (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Risk factors’ score</td>
<td>69.8</td>
<td>66.1–73.0</td>
</tr>
<tr>
<td>Specific factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical comorbidities</td>
<td>48.9</td>
<td>40.5–56.2</td>
</tr>
<tr>
<td>Previous pregnancy problems</td>
<td>21.1</td>
<td>11.7–29.5</td>
</tr>
<tr>
<td>Hypertensive disorders of pregnancy</td>
<td>12.0</td>
<td>7.7–16.1</td>
</tr>
<tr>
<td>Inadequate use of antenatal care</td>
<td>10.5</td>
<td>9.7–11.4</td>
</tr>
<tr>
<td>Indian ethnicity</td>
<td>2.9</td>
<td>0.3–5.5</td>
</tr>
<tr>
<td>Substance misuse</td>
<td>1</td>
<td>0.03–1.4</td>
</tr>
</tbody>
</table>

BJOG 2015;122:653–662
Maternal Comorbidity

 - 6% Cardiovascular outcome
Maternal Comorbidity

 - 6% major events (mortality, LVAD, transplant)

 - 10% adverse maternal events (2% mortality)
 - 50% adverse fetal outcomes
Maternal Mortality

Main EK, McCain CL, Morton CH, et al.
Pregnancy-Related Mortality in California: Causes, Characteristics, and Improvement Opportunities.
Obstet Gynecol 2015;125:938-47
Maternal Mortality

Preventable?

41% of deaths ‘Good to Strong’

- Hemorrhage (70%)
- Preeclampsia (60%)
- Cardiovasc (29%)
- AFE (0%)

Obstet Gynecol 2015;125:938-47
Obstetric Anesthesia

Parturients are older and have more complex medical histories.

Challenge:

How do we improve care?
ICU Admissions

ICU Admissions

- French hospital discharge database
 - (Programme de Médicalisation des Systèmes d’Information)

- 11,824 pregnancy-related ICU admissions in France from 2006 to 2009
 - 3.62 per 1,000 deliveries
ICU Admissions

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>% of admissions</th>
<th>Rate / 100,000 deliveries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemorrhage</td>
<td>34.2</td>
<td>1.24</td>
</tr>
<tr>
<td>Hypertensive DO</td>
<td>22.3</td>
<td>0.81</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>8.0</td>
<td>0.29</td>
</tr>
<tr>
<td>Infectious</td>
<td>*</td>
<td>0.13</td>
</tr>
<tr>
<td>Thromboembolic</td>
<td>2.8</td>
<td>0.10</td>
</tr>
<tr>
<td>Anesthesia</td>
<td>*</td>
<td>0.02</td>
</tr>
<tr>
<td>AFE</td>
<td>*</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Crit Care Med 2015;43:78-86
Sepsis

Bauer ME, Lorenz RP, Bauer ST, et al.
Maternal Deaths Due to Sepsis in the State of Michigan, 1999-2006.
Obstet Gynecol 2015;126:747-52
Sepsis

• Maternal Mortality Surveillance records from the Michigan Department of Community Health

• Sepsis identified by:
 • Death certificate cause of death,
 • Maternal Mortality Medical Surveillance Committee, or
 • Specific source of infection leading to organ failure

Obstet Gynecol 2015;126:747-52
Sepsis

558 maternal deaths

• 14 per 100,000 live births

Sepsis:

• 15% of pregnancy – related mortality
• 2.1 deaths/100,000 live births

Obstet Gynecol 2015;126:747-52
Sepsis

- Inadequate care:
 - Delayed identification
 - Delayed treatment
 - Inadequate antibiotic coverage
Cesarean Delivery
Cesarean and Mortality

“There is no justification for any region to have a cesarean delivery rate higher than 10-15%”

World Health Organization

Lancet. 1985;2(8452):436-437
Cesarean and Mortality

Relationship between Cesarean Delivery Rate and Maternal and Neonatal Mortality.
JAMA 2015;314:2263-70
Cesarean and Mortality

<table>
<thead>
<tr>
<th>194 WHO member states</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 54 countries with published rates</td>
</tr>
<tr>
<td>• 118 countries with estimated from previous</td>
</tr>
<tr>
<td>• 22 countries calculated from economic / social factors</td>
</tr>
</tbody>
</table>

2012:

• 22,900,000 cesarean deliveries (est)

JAMA 2015;314:2263-70
Cesarean and Mortality

Maternal Mortality Rate

\[\geq 19.1\% \ (95\% \text{ CI, } 16.3\% \text{ to } 21.9\%) \]

\[\geq 20\% \text{ when only high quality data used} \]
Cesarean and Mortality

Neonatal Mortality Rate

≥ 19.4% (95% CI, 18.6% to 20.3%)
≥ 24% when only high quality data used
Cesarean Anesthesia
Conversion to GA

86% of anesthesia-associated mortality during cesarean

Failed airway ~ 1 / 250 parturients

Mortality from anesthesia has decreased

? Improved practice and equipment?
Cesarean Anesthesia
Conversion to GA

Regional >> General

- Mortality
- Side effects
- Participation
Cesarean Anesthesia
Conversion to GA

Maternal and Fetal Outcomes Following Unplanned Conversion to General Anesthetic at Elective Cesarean Section.

J Perinatol 2015;35:695-9
Cesarean Anesthesia
Conversion to GA

4337 deliveries from 2008 to 2013

- Single center
- Non-emergent

Identified conversion to general anesthesia

J Perinatol 2015;35:695-9
Cesarean Anesthesia
Conversion to GA

Rate of general anesthesia: 3.8%

<table>
<thead>
<tr>
<th>Type of Anesthesia</th>
<th>Number planned</th>
<th>Convert to GA</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidural</td>
<td>132</td>
<td>15</td>
<td>11.4%</td>
</tr>
<tr>
<td>Spinal</td>
<td>3831</td>
<td>67</td>
<td>1.74%</td>
</tr>
<tr>
<td>CSE</td>
<td>291</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

General anesthesia associated with:
- Delayed neonatal respiration
- Maternal blood loss

J Perinatol 2015;35:695-9
Patient Safety Minute

Obstetric Airway
Guidelines
Obstetric Airway

Three Algorithms:
1. Safe Obstetric General anesthesia
 Planning and preparation, up to second failed attempt
2. Obstetric Failed Tracheal Intubation
3. ‘Can’t Intubate, Can’t Oxygenate’
5 valuable charts to aid decision-making
Poster-ready format

Master algorithm – obstetric general anaesthesia and failed tracheal intubation

Algorithm 1
Safe obstetric general anaesthesia

Pre-induction planning and preparation
Team discussion

Rapid sequence induction
Consider facemask ventilation (P_{max} 20 cmH$_2$O)

Laryngoscopy
(maximum 2 intubation attempts; 3rd intubation attempt only by experienced colleague)

Success
Verify successful tracheal intubation and proceed
Plan extubation

Fail

Algorithm 2
Obstetric failed tracheal intubation

Declare failed intubation
Call for help
Maintain oxygenation
Supraglottic airway device (maximum 2 attempts) or facemask

Success
Is it essential/safe to proceed with surgery immediately?

No
Wake

Yes
Proceed with surgery

Algorithm 3
Can’t intubate, can’t oxygenate

Declare CICO
Give 100% oxygen
Exclude laryngospasm – ensure neuromuscular blockade
Front-of-neck access

Patient Safety
Visual Aids

Cesarean Delivery

Adverse Events

Anesthesiol 2015;123:1013-23
Cesarean Delivery

Adverse Events

2003 to 2012

Hospital discharge records

785,000 cesarean deliveries

Anesthesiol 2015;123:1013-23
Cesarean Delivery

Adverse Events

Anesthesia events
Rate = 730 / 100,000

Non-anesthesia events
Rate = 890 / 100,000

Anesthesiol 2015;123:1013-23
Cesarean Delivery

Adverse Events

<table>
<thead>
<tr>
<th>Anesthesia events</th>
<th>Non-anesthesia events</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Minor – 94% of events</td>
<td>• Myocardial infarction</td>
</tr>
<tr>
<td>• Dural puncture headache</td>
<td>• Heart failure</td>
</tr>
<tr>
<td>• Major (≥ 1% risk of death)</td>
<td>• Respiratory failure</td>
</tr>
<tr>
<td></td>
<td>• PE / DVT</td>
</tr>
<tr>
<td></td>
<td>• DIC</td>
</tr>
<tr>
<td></td>
<td>• Renal failure</td>
</tr>
<tr>
<td></td>
<td>• Sepsis</td>
</tr>
<tr>
<td></td>
<td>• Stroke</td>
</tr>
</tbody>
</table>

Anesthesiol 2015;123:1013-23
Cesarean Anesthesia

Hypotension

Aortocaval compression
- Supine hypotension syndrome
- Fetal perfusion decrease

Foundation for lateral tilt

How much tilt is required?
Higuchi H, Takagi S, Zhang K, et al.
Effect of Lateral Tilt Angle on the Volume of the Abdominal Aorta and Inferior Vena Cava in Pregnant and Nonpregnant Women Determined by Magnetic Resonance Imaging.
Anesthesiol 2015;122:286-93
Cesarean Anesthesia

Hypotension

10 healthy pregnant women (37 – 39 wks)

10 healthy volunteers

MRI performed at 4 positions of tilt

Aortic and vena cava volumes measured (L2-3 and L3-4)
Cesarean Anesthesia Hypotension

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pregnant (n=10)</th>
<th>Nonpregnant (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac output (l/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>5.4±0.9</td>
<td>4.6±0.8</td>
</tr>
<tr>
<td>15°</td>
<td>5.6±0.9</td>
<td>4.7±0.7</td>
</tr>
<tr>
<td>30°</td>
<td>5.3±0.9</td>
<td>4.5±0.6</td>
</tr>
<tr>
<td>45°</td>
<td>5.4±1.1</td>
<td>4.5±0.6</td>
</tr>
<tr>
<td>Mean arterial pressure (mmHg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>77±8</td>
<td>76±8</td>
</tr>
<tr>
<td>15°</td>
<td>80±8</td>
<td>77±5</td>
</tr>
<tr>
<td>30°</td>
<td>78±9</td>
<td>76±5</td>
</tr>
<tr>
<td>45°</td>
<td>80±10</td>
<td>75±6</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>81±14</td>
<td>72±4</td>
</tr>
<tr>
<td>15°</td>
<td>79±13</td>
<td>73±7</td>
</tr>
<tr>
<td>30°</td>
<td>79±14</td>
<td>69±5</td>
</tr>
<tr>
<td>45°</td>
<td>81±14</td>
<td>71±6</td>
</tr>
</tbody>
</table>
Cesarean Anesthesia

Hypotension

Hypotension is potentially bad

- Fluids: Ineffective
- Ephedrine: Tachycardia
 Fetal acidosis
- Phenylephrine: Bradycardia
 Decreased cardiac output
Ngan Kee WD, Lee SW, Ng FF, et al.
Randomized Double-Blinded Comparison of Norepinephrine and Phenylephrine for Maintenance of Blood Pressure During Spinal Anesthesia for Cesarean Delivery.
Anesthesiol 2015;122:736-45
Cesarean Anesthesia

Hypotension

104 parturients
- Scheduled cesarean delivery
- ASA 1 or 2
- Singleton
- Term

Spinal anesthesia
- 11mg bupivacaine (hypobaric) / 15μg fentanyl
- 2 liter IV fluid cohydration
- Hip wedge

Anesthesiol 2015;122:736-45
Cesarean Anesthesia
Hypotension

Randomized to infusion of:
- Norepinephrine
- Phenylephrine

Infusion maintained by computer-controlled, closed-loop feedback system.

Primary outcome: Cardiac Output

Anesthesiol 2015;122:736-45
Postpartum Care

Elevated Upper Body Position Improves Pregnancy-Related OSA without Impairing Sleep Quality or Sleep Architecture Early after Delivery.
Chest 2015;148:936-44
Postpartum Care

Body position alters obstructive sleep apnea (OSA)

~ 5% of parturients

30 postpartum women (day 2)
 • Polysomnography (sleep study)
 • Crossover design
 • Horizontal vs. 45° incline

Chest 2015;148:936-44
Postpartum Care

<table>
<thead>
<tr>
<th>Horizontal</th>
<th>45 Degree Incline</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apnea Hypopnea Index</td>
<td>7.7 ± 2.2 / hr</td>
<td>4.5 ± 1.4 / hr</td>
</tr>
</tbody>
</table>

No differences in sleep quality parameters

Chest 2015;148:936-44
Postpartum Care

IJOA 2015;24:124-30
Postpartum Care

Enhanced recovery / fast tracking

- Cardiac surgery
- Colorectal
- Orthopedic
- Gynecologic
- Urology

Reduced morbidity, faster recovery

IJOA 2015;24:124-30
Postpartum Care

- Select patient population
- Education!
- Sports drink 2h preop
- Active warming in OR
- Spinal anesthesia with diamorph
- Early feeding
- Early mobilization
Postpartum Care

Table of Readmissions

<table>
<thead>
<tr>
<th>Day of discharge</th>
<th>Number discharged n (%)</th>
<th>Readmissions n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>114 (15%)</td>
<td>5 (4%)</td>
</tr>
<tr>
<td>Day 2</td>
<td>375 (49%)</td>
<td>21 (6%)</td>
</tr>
<tr>
<td>Day 3+</td>
<td>271 (36%)</td>
<td>35 (13%)</td>
</tr>
</tbody>
</table>
Does the Presence of a Condition-Specific Obstetric Protocol Lead to Detectable Improvements in Pregnancy Outcomes?
Am J Obstet Gynecol 2015;213:86 e1-6
Protocols and Guidelines

NICHD / MFMU

25 hospitals – 4 years – 115,502 patients

Protocols:

- Hemorrhage
- Shoulder dystocia
- Preeclampsia

Am J Obstet Gyneco 2015;213:86 e1-6
Protocols and Guidelines

No change in outcomes
No change in morbidity

Am J Obstet Gynecol 2015;213:86 e1-6
Guidelines

Guidelines

- American College of Obstetricians and Gynecologists (2013)
- Royal College of Obstetrician and Gynaecologists (2011)
- Society of Obstetricians and Gynaecologists of Canada (2009)
- Royal Australian and New Zealand College of Obstetricians and Gynaecologists (2014)
Guidelines

References # range from 12 to 110

Minimal review of RCT and meta-analyses

- ACOG: NONE!

Few points of agreement

Am J Obstet Gynecol 2015;213:76 e1-10
Points of Agreement

- Definition: Clinical markers > visual EBL
- Active management of 3rd stage
 - Medications in agreement
- Surgical or interventional radiology
 - 2nd line after medications
- Units should have resuscitative equipment
- Internal iliac balloons are +/- in accreta
Placenta Accreta

Placenta Accreta

Nationwide Inpatient Sample

- 2000-2011 data
- Discharges from 1000 hospitals
- 20% sample of the US

Trends in primary and repeat cesarean delivery: Nationwide Inpatient Sample, United States, 2000-2011
FIGURE 2
Percentage rate changes in morbidity associated with cesarean delivery complications: United States, 2000-2011
Placenta Accreta

The Effects of Anesthesia Associations or Causality?

A ≠ B
Spann MN, Serino D, Bansal R, et al.
Morphological Features of the Neonatal Brain Following Exposure to Regional Anesthesia During Labor and Delivery.
Mag Res Imag 2015;33:213-21
37 healthy infants

- MRI two weeks post delivery

Anesthesia

- None $n=13$
- Spinal anesthesia $n=12$
- Epidural analgesia $n=12$

Behavioral testing 12 months

Mag Res Imag 2015;33:213-21
Anesthesia and The Developing Brain

Mag Res Imag 2015;33:213-21
Anesthesia and The Developing Brain

Mag Res Imag 2015;33:213-21
Anesthesia and The Developing Brain

Analgesia ≠ Un-medicated

Cesarean ≠ Vaginal
Anesthesia and The Developing Brain

- Sevoflurane (mice) Long-term learning impairment

- Propofol (rats) TNF-α in the cortex and thalamus

- Morphine (human) behavioral up to 2 years
Association between Childhood Exposure to Single General Anesthesia and Neurodevelopment: A Systematic Review and Meta-Analysis of Cohort Study.
J Anesth 2015;29:749-57
Anesthesia and The Developing Brain

<table>
<thead>
<tr>
<th>Study</th>
<th>HR (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bartles 2009</td>
<td>1.70 (0.60, 5.00)</td>
<td>0.85</td>
</tr>
<tr>
<td>Dimaggio 2011</td>
<td>1.10 (0.80, 1.40)</td>
<td>12.21</td>
</tr>
<tr>
<td>Flick 2011</td>
<td>1.09 (0.80, 1.48)</td>
<td>10.10</td>
</tr>
<tr>
<td>Hansen 2011</td>
<td>1.13 (0.98, 1.31)</td>
<td>45.39</td>
</tr>
<tr>
<td>IngC 2012</td>
<td>1.73 (1.04, 2.88)</td>
<td>3.69</td>
</tr>
<tr>
<td>IngC 2014</td>
<td>1.35 (1.05, 1.75)</td>
<td>14.65</td>
</tr>
<tr>
<td>Kalkman 2009</td>
<td>1.27 (0.74, 2.16)</td>
<td>3.33</td>
</tr>
<tr>
<td>Ko.WR 2014</td>
<td>0.93 (0.57, 1.53)</td>
<td>3.92</td>
</tr>
<tr>
<td>Sprung 2012</td>
<td>1.35 (0.90, 2.02)</td>
<td>5.85</td>
</tr>
<tr>
<td>Overall (I^2 = 0.0%, p = 0.656)</td>
<td>1.18 (1.07, 1.30)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

J Anesth 2015;29:749-57
Anesthesia and The Developing Brain

Kids who need surgery ≠ Kids who don’t
Epidural “Fever”

- Epidural analgesia
- Inflammation
- Infection
- Neurologic injury

Relations:
- Epidural analgesia to Inflammation
- Inflammation to Infection
- Infection to Neurologic injury
- Neurologic injury to Epidural analgesia
- Epidural analgesia to Neurologic injury
- Inflammation to Epidural analgesia
- Inflammation to Neurologic injury
Epidural “Fever”

Neal JL, Lamp JM, Lowe NK, et al.
Differences in Inflammatory Markers between Nulliparous Women Admitted to Hospitals in Preactive Vs Active Labor.
Am J Obstet Gynecol 2015;212:68 e1-8

Inflammatory biomarkers = active labor
Epidural “Fever”

Inflammatory biomarkers in mom = no injury
Inflammation in fetus = neurologic injury
Epidural “Fever”

Histological Severity of Fetal Inflammation Is Useful in Predicting Neonatal Outcome.
Placenta 2015;36:1490-3

Chorionic (maternal) inflammation
= no neurologic injury

Funisitus (fetal) inflammation
= neurologic injury
Stages of ascending intraamniotic infection

- Stage I
- Stage II
- Stage III
- Stage IV
Epidural “Fever”

Low Apgar Score, Neonatal Encephalopathy and Epidural Analgesia During Labour: A Swedish Registry-Based Study.

Epidural “Fever”

Swedish Birth Registry
- 300,000 deliveries
- 10 years
- Nulliparous women with singleton pregnancies at term
- Spontaneous onset of delivery

Epidural analgesia: 44%

Epidural “Fever”

Women who received Epidural Analgesia

• Shorter
• Higher BMI
• Larger fetus

Epidural “Fever”

Women who received Epidural Analgesia

• Dystocia and prolonged labor
• Instrumental delivery
• Chorioamnionitis or other infections

• 6 – fold higher rate of fever
 (1.4% vs. 0.24%)

Epidural “Fever”

<table>
<thead>
<tr>
<th>Multivariate analysis:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidural</td>
<td>No neurologic sequela</td>
</tr>
<tr>
<td>Fever</td>
<td>Convulsions</td>
</tr>
<tr>
<td></td>
<td>Neonatal cerebral ischemia</td>
</tr>
</tbody>
</table>

Epidural “Fever”

Epidural fever ≠ Funisitis = Neurologic Injury
Labor Analgesia
Second Stage

Craig MG, Grant EN, Tao W, et al.
A Randomized Control Trial of Bupivacaine and Fentanyl Versus Fentanyl-Only for Epidural Analgesia During the Second Stage of Labor.
Anesthesiol 2015;122:172-7
Labor Analgesia
Second Stage

310 nulliparous laboring women

Second stage epidural infusion
 • Bupivacaine/fentanyl
 • Fentanyl

Second stage: 75 min vs. 73 min

No difference in labor outcomes
Labor Analgesia

Second Stage

Weak legs ≠ Weak Uterus
Thank you!